

Confrontation numérique / expérimental : Cas d'une paroi test

Christophe Lanos

LGCGM – Univ. Rennes

GDR MBS Ecole d'automne 2021 – La Rochelle

1 Objectifs

• Adapter des modèles physicochimiques et des outils de simulation numérique à l'étude du transfert thermohydrique au sein des matériaux biosourcés

- 2. Mur de référence ISOBIO et propriétés des matériaux
- 3. Equations de Künzel
- 4. Le modèle de cinétique locale de sorption
- 5. Simulation de la sorption : validation du modèle de cinétique locale
- 6. Simulation du démonstrateur ISOBIO
- 7. Conclusions

• Bétons de chanvre étudiés

- PHC (Béton chanvre préfabriqué)
- SHC (Béton chanvre projeté)
- MHC (Béton de chanvre moulé)

• Compilation des propriétés hygrothermiques des matériaux (Collet et al., Energy and Buildings 2013, ICBBM 2019)

		Density	Porosity	Vapor resistance	Thermal	Specific heat
		ρ	$\boldsymbol{\varepsilon}_{0}$	factor μ_0	conductivity λ_0	capacity <i>Cp</i> 0
		(kg.m ⁻³)	(-)	(-)	(W.m ⁻¹ .K ⁻¹)	(J.kg ⁻¹ .K ⁻¹)
2 hátana da	PHC	450	0.68	4	-	-
3 belons de	SHC	425	0.66	4	-	-
chanvre	MHC	425	0.77	4	-	-
	BCB	530	0.55	9	0.13	1006
	CAV	197	0.87	11	0.07	2100
	BIO	28	0.98	3.6	0.039	1800
Matériaux u 🛛	OSB3	567	0.61	138	0.13	1600
mur ISOBIO	INT	85	0.085	1.36.10 ⁵	2.4	2500
	CSB	505	0.72	27	0.10	1700
	CLA	1392	0.29	10	0.62	1040

+ cinétiques de sorption à l'échelle de l'échantillon \rightarrow isothermes de sorption

• Modélisation des propriétés

- Isothermes de sorption ajustées avec un modèle de Van Genuchten (VG):

$$W_{eq}\left(RH\right) = W_{sat}\left[1 + \left(-\frac{h}{\ln\left(RH\right)}\right)^{\eta}\right]^{1/\eta}$$

- Conductivité thermique calculée à l'aide d'un schéma auto-coherent :

 $\lambda(W) = \lambda_{s} \left\{ 1 + \varepsilon_{0} \left[(1 - \varepsilon_{0})/3 + (3 + (W/1000\varepsilon_{0})(0.025/0.6 - 1)) \cdot (3(0.025/\lambda_{s} - 1) - (W/1000\varepsilon_{0})(0.025/0.6 - 1)(2 \cdot 0.6/(\lambda_{s} + 1)))^{-1} \right]^{-1} \right\}$

	W _{sat} (kg.m ⁻³)	h _{ads} (-)	η _{ads} (-)	h _{des} (-)	η _{des} (-)	λ _s (W.m ⁻¹ .K ⁻¹)
PHC	680	166	2.05	258	1.65	-
SHC	660	378	1.77	500	1.46	-
MHC	770	185	1.98	75	1.66	
BCB	546	8524	1.38	-	-	0.312
CAV	874	4830	1.435	-	-	0.115
BIO	348	198852	1.473	-	-	0.048
OSB3	609	25410	1.325	-	-	0.809
INT	85	2091	1.42	-	-	2.73
CSB	720	12966	1.334	-	-	0.317
CLA	294	12000	1.36	-	-	0.995

• Modélisation des propriétés

Bétons de chanvre

PHC: Isothermes d'adsorption / désorption

SHC: Isothermes d'adsorption / désorption

CAV: Isotherme d'adsorption

INT: Résistance à la vapeur hygrovariable

3. Equations de Künzel

• Hypothèses de base

Localement, l'adsorption de la valeur d'eau est très rapide donc la teneur en eau locale w évolue selon la courbe de l'isotherme de sorption:

$$w_{eq} = w_{eq}(\varphi)|_{T}$$

 \Rightarrow Equilibre instantané entre la teneur en eau locale *w* / l'humidité relative locale φ

• Equation de conservation de la masse de Künzel

$$\frac{\partial w}{\partial \varphi} \bigg|_{T} \frac{\partial \varphi}{\partial t} - \nabla \cdot \left[\left(\frac{\delta_{v}}{\mu} P_{sat} + D_{p,l} \frac{\partial w}{\partial \varphi} \bigg|_{T} \right) \nabla \varphi \right] = 0$$

 $\frac{\partial w}{\partial \varphi}\Big|_{T}$: dérivée de l'isotherme de sorption

 $\delta_{\rm v}/\mu$:perméabilité vapeur du milieu poreux

D_{p,l} : diffusivité liquide

4. Le modèle de cinétique locale de sorption

• Hypothèses

La sorption de l'eau n'est pas aussi rapide que le flux diffusive = la ciétique locale de sorption est relativement lente

• Equation de conservation de la masse

$$\left[\frac{\partial (\varphi P_{sat})}{\partial t} - \nabla \cdot \left[\frac{\delta_{v}}{\mu} \frac{RT}{M_{w}} \nabla (\varphi P_{sat}) \right] = -\frac{RT}{M_{w}} R_{s} \right]$$
$$\left[\frac{\partial w}{\partial t} - \nabla \cdot \left(D_{p,l} \nabla w \right) = R_{s} \right]$$

vitesse de sorption

$$R_{s} = k_0 \left(w_{eq} \left(\varphi \right) - w \right)^2$$

où k_0 est une constant, et la cinétique est d'ordre 2. Expression établie et validée pour 3 bétons de chanvre

(Reuge et al., Transp. in porous med., 2019)

4. Le modèle de cinétique locale de sorption

• Illustration de la cinétique locale (adsorption)

4. Le modèle de cinétique locale de sorption

• Illustration de la cinétique locale (désorption)

5. Simulation de la sorption : validation du modèle de cinétique locale

• Béton de chanvre MHC, cinétique d'adsorption /désorption à l'echelle de l'échantillon

La constant cinétique est déterminée par ajustement de simulations numériques en 1D cylindrique : $k_0 = 2 \text{ day}^{-1}/(\text{kg.m}^{-3})$

5. Simulation de la sorption : validation du modèle de cinétique locale

• Panneau de chènevotte rigide (CAV), cinétique d'adsorption à l'echelle de l'échantillon

5. Simulation de la sorption : validation du modèle de cinétique locale

• Compilation des constantes de cinétique locale k₀

$$R_s = \frac{k_0}{\left(w_{eq}\left(\varphi\right) - w\right)^2}$$

• Modèle cinétique semi-empirique (à l'échelle de l'échantillon :

$$W(t) = \left[W_i + W_f \left(W_f - W_i\right) k_0 t\right] / \left[1 + \left(W_f - W_i\right) k_0 t\right]$$

 \rightarrow permet de déterminer k_0 avec une expression analytique au lieu d'utiliser des simulations numériques

• démonstrateur HIVE (Wroughton, UK)

→ Mur de référence ISOBIO équipé de capteurs T et HR
→ Mesures réalisées Durant 18 jours en février 2018

Position des capteurs:

EXT

- Dans le démonstrateur
- **pos1** à l'interface CAV/BIO1
- **pos2** à l'interface BIO1/OSB3
- pos3 à l'interface INT/BIO2
- A l'extérieur du démonstrateur (station météo)

• Conditions aux limites

→ climat froid et humide – prise en compte des apports solaires (pas de pluie)

• Conditions initiales

- Etape 1:

t = -54 jours, 80% RH et T = 10°C appliqué dans le mur (à la teneur en eau d'équilibre pour chaque couche)

Etape 2
Le mur est soumis à 3 cycles préliminaires de 18 jours de climat:
cycle P1 = résultats finaux (T, HR) = conditions initiales du cycle suivant
cycle P2 = résultats finaux (T, HR) = conditions initiales du cycle suivant
cycle P3 =

 \rightarrow résultats finaux (T, HR) = conditions initiales à t = 0 pour les simulations

• Outil numérique

- Outil 1D Cartésien développé sous Mathlab
- Transferts de masse et de chaleur : approche classique de Künzel couplée avec la cinétique locale de sorption
- Effets de la température sur la sorption négligée
- Pas d'effet d'hystérésis
- Diffusion liquide négligée

• Résultats des simulations

→ TMC basé sur l'approche de Künzel (1D) / TMCKIN basé sur l'approche selon la cinétique locale (1D)

• Résultats des simulations

→ TMC basé sur l'approche de Künzel (1D) / TMCKIN basé sur l'approche selon la cinétique locale (1D)

• Résultats des simulations

→ TMC basé sur l'approche de Künzel (1D) / TMCKIN basé sur l'approche selon la cinétique locale (1D)

7. Conclusions

Résultats des simulations
→ teneur en eau versus HR

Evolution of local water content w as a function of local relative humidity φ at position 1 during the studied period of time (18 days) – TMC and TMCKIN simulations

7. Conclusions

Résultats des simulations

→ dérive de la teneur en eau moyenne

→ Influence de l'histoire hygrique

Total water content in the ISOBIO wall predicted after consecutive runs – TMC and TMCKIN simulations

7. Conclusions

 \rightarrow La classique approche selon Künzel est invalidée

→ La nouvelle approche basée sur la cinétique locale de sorption est validée pour plusieurs matériaux
→ est ce un caractère universel (au moins pour les matériaux biosourcés)?

→ L'effet de la cinétique locale sur la dynamique du signal HR sur courte période (≈10 h) a été mis en évidence et est en accord avec les enregistrements produits sur le mur démonstrateur

→ L'écart léger entre le signal UR expérimental et numérique, lié aux conditions initiales fixées
→ influence de l'histoire hydrique vécue par le matériau

→ Couplage cinétique – hystérésis = complexe sur le plan numérique mais affine les résultats

• Références

Collet et al., Energy and Buildings 2013, ICBBM 2019 Reuge et al., Transp. in porous med., 2019 Ait Oumeziane et al., Transport In Porous Media, 2014 103, 515-533 Collet et al., 3rd International Conference on Bio-Based Building Materials, June 26th -28th 2019 Reuge et al., Construction and Building Materials, 2020